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The Candy model: properties and
inference

M. N. M. van Lieshout* and R. S. Stoica**
CWI, P.O. Box 94079,1090 GB Amsterdam,The Netherlands

In this paper we study the Candy model, a marked point process
introduced by Stoica et al. (2000). We prove Ruelle and local
stability, investigate its Markov properties, and discuss how the
model may be sampled. Finally, we consider estimation of the
model parameters and present a simulation study.

Key Words and Phrases: Candy model, Markov chain Monte Carlo
simulation, Markov marked point process, maximum likelihood
estimation, stability.

1 Set-up and notation

High resolution images found in fields such as microscopy. remote sensing and
medicine pose interpretation problems that can often be formulated in geometric
terms. For example. a microscopist may want to classify cells. and a doctor is
interested in detecting abnormalities in scans. Thus, it is of prime interest to develop
statistical models tor object scenes to replace the more commonly used image models
that operate on the pixel level. Convenient theoretical tools in this context are
provided by the theory of marked point processes. in which an image is naturally
regarded as a collection of objects, and inference focuses on locating and
characterizing them. However, realistic models for the complicated objects encoun-
tered in practice are still scarce. Indeed. it is the (very ambitious) goal of the scientific
community involved in this area to build and analyze rigorous mathematical models
which can deal with the complex reality of high resolution images.

Stoica et al. (2000) and Stoica (2001) introduced a marked point process model
for line segments ~ dubbed Cundy - as prior distribution for the image analysis
problem of extracting linear networks such as roads or rivers from images (usually
obtained by aerial photography or satellites). In this paper we investigate the
analytical properties of the model. focusing on the Ruelle condition. local stability
and the interaction structure. We also study statistical aspects. including simulation
by Markov chain Monte Carlo and parameter estimation.

We shall represent a line segment as a point in some compact subset K C R of
strictly positive volume 0<v(K)< o with an attached mark taking values in the
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178 M. N. M. van Lieshout and R. S. Stoica

Cartesian product [/uin, fmax] X [0, ©) for some 0 </yin </nax < °o. Each marked
point (k, /. 0) can be interpreted as a line segment with midpoint k, length /, and
orientation 6. If required, an extra mark for the width of the segment may be added.
Note that in the original formulation in (Stoica et al., 2000, and Stoica, 2001) the
mark space for orientations is [0, 27 ].

A configuration of line segments is a finite set of marked points. Thus, for n € N,
write S, for the set of all (unordered) configurations s = {s,...., 8,,} that consist of 1,
not necessarily distinct, marked points s; € S = K X [/nins lmax) X [0, 7). Hence, the
configuration space can be written as Q = U;<\S,,, which may be equipped with the
o-algebra F generated by the mappings {si,...,s,} — >, I{s; € A} that count
the number of marked points in Borel sets 4 < S. If the marks are discarded, the
configuration space of midpoints is Qg = UX K, where K, is the set of all
configurations x = {ky,....k,} that consist of n, not necessarily distinct, points
k; € K; the associated g-algebra Fy is generated by the mappings counting the
number of points falling in Borel subsets of K.

A point process on K is a measurable mapping from some probability space into
(Qg. Fx); a marked point process with points in K and marks in [/nin, fmax] X [0, ) is
a point process on the product space K X [/yin. fmax] ¥ [0, ®) with the additional
property that the marginal process of segment centers is a point process on K. For
further details, see (DALEY and VERE-JONES, 1988, Section 7.1).

Perhaps the simplest marked point process model is the Poisson process defined by
the probability measure on (Q, F) assigning mass

—v(K)

.“(F) = Ze n! {n(lmax - lmin)}_”/s. : /; IF({(kh llle)a ceen (knv lnweu)})

n=0
x dv(ky) - -~ dv(ky)dl, - - - d1,d0; - - db,

to F € F. In other words, under p, midpoints are placed in K according to a Poisson
process with intensity measure v, to which points independent, uniformly distributed
marks are assigned to determine the length and orientation. As it exhibits no
interactions, the above Poisson marked point process is the ideal reference process.
Indeed, one may define more complicated models by specifying a Radon-Nikodym
derivative p with respect to p.

The plan of this paper is as follows. In section 2, we define the Candy model in
terms of its density (Radon-Nikodym derivative) with respect to p. We establish the
Ruelle condition and local stability. Furthermore, we define several relations on S,
and investigate the Markov behavior of the Candy model. In section 3, a
Metropolis-Hastings algorithm based on births and deaths is suggested for sampling
from the Candy model. We discuss the convergence of the algorithm, and prove
geometric ergodicity. More sophisticated updates including non-uniform births and
deaths, and changes in the marks are discussed subsequently. Section 4 builds on the
results obtained in previous sections to perform maximum likelihood based
inference. The paper is concluded by simulation examples.
© VVS, 2003



The Candy model: properties and inference 179

2 The Candy model: stability and Markov properties

2.1 Madel specification

The Candy model was developed in the context of a concrete image analysis
problem (Storca et al.. 2000). where. in order to decide whether two line segments
were connected, discretization effects had to be taken into account. From a theoretical
point of view. under the reference Poisson process almost surely no exact join between
a pair of segments occeurs. Such considerations motivate the following definition.

DerrNimion 1. Let x = (k[ 0) and v = (k. [, 0,) be nwo marked poinis. Then, x
and v are said to be connected, x ~ v, if at feast one of the tollowing holds
r
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tor some given r. <.

The relation of definition 1 is reflexive. that is, any x € Sis connected to itself, and
symmetric. Similarly, an endpoint ¢ of a segment x is said to be connected in the
configuration s if another segment in s can be found with at least one endpoint closer
than r. to e. Following Stoica et al. (2000) and Stoica (2001). we distinguish
between singly connected segments with exactly one connected endpoint and doubly
connected ones for which both endpoints are connected. A segment that is not
connected to any other segment is said to be free.

Lemma 1. The mappings n, and n,. assigning to a configuration s € Q the number of
free. respectively singly connected segments are measurable with respect to F.

Proor: First. consider n,. By its very nature, the mapping that counts the number
of free segments in a configuration is a symmetric function of its argument. Thus,
it is sufficient (REIss, 1993, Section 3.1) to check that the function f: §* — R defined
by

R

Flsyeo8,) = Z 1{s; is free}

i=1
is Borel measurable for each n € N,,. Now, for fixed i # j € {1..... n}. the function
Flisie. .. sp) defined by
' > r(.}

N
1 . 1 .
I &, + 54 (cos by sin b)) — &, — 51y, (cos b, .sindy )
is Borel measurable as a mapping on S”. Here. we use the notation s; = (ky. £.00,).

< VVS. 2003



180 M. N. M. van Lieshout and R. S. Stoica
Analogously. /7, /i and f% defined similar to f;'; but using the second up to fourth
condition of definition | instead of the first are Borel measurable. Consequently,

4
1{s; is free} = HH]??}(51, Sy Sn)

J#i m=1
is Borel measurable, and so is the sum of these functions over /. A similar argument
implies that n, is measurable with respect to F. |

Next, define two neighborhood relations on S.

DEFINITION 2. Let §>0. The relation ~, on S is defined by
x ~ y & ke — k|| < max{l, [,}/2 and | |0 — 0,| = /2 |> 0
Jor any pair of marked points x = (k. Iy, 0y) and y = (k,. 1, 0,).

The relation ~, is symmetric, and reflexive if § <m/2.

DEFINITION 3. The influence zone Z(s) of a marked point s = (k, [, 0) € S is given by
1 . 1 1 . 1
Z(s) = b(k-i—il(cos 0,sin 6)’Zl> Ub(k - il(cos 6,sin 0),Zl>,

the union of balls with radius I/4 around the endpoints. The relation ~, on S is
defined by X ~,y & ||k —ky| > imax{l,1,} and either exactly one endpoint
ke % [ (costy,sinf,) of x is a member of Z(y) or exactly one endpoint
ky i%ly(cos()_,‘, sin,) of v is a member of Z(x). Here x = (k. [\, 0\) and y = (k,, I,
0,) are elements of S.

For a given configuration s, write ns) for the number of unordered ~, neighbor pairs
in's; similarly n,(s) denotes the number of ~, neighbor pairs {x,y} in s with the extra
property that

min{|0, — 0,].m ~ [0 = 0,]} > © (%)

for some threshold value 1> 0.

Note that ~, is symmetric but not reflexive.

LEMMA 2. The mappings n, and n,, assigning to a configuration s € Q the number of its
~, neighbor pairs, respectively the number of its ~, neighbor puirs satisfying () are
measurable with respect to F.

Proor. The counting of marked point pairs satisfying the conditions mentioned
above is a symmetric operation. Regarding n,, for each (x, y), 1{x ~,p} is a
Borel measurable function on S, from which observation the result follows as
in the proof of lemma 1. A similar, slightly more involved, argument applies to
n,.

© VVS, 2003



The Candy model: properties and inference 181

Fig 1. Geometrical representation of interactions between segments,

In figure I we give a geometrical representation of some interactions between
segments. Note that s1 ~_ $3, 51 ~. 53 and s> ~_ s3: the segments s, and s5 are free, s,
and s; are singly connected and s; is doubly connected. When o is small, 5, ~, 55
whereas s =, 53. Furthermore. sy ~, s3 as well as sy ~,, ss. but, for small 1, the pair
's4. 85} contributes to n, whereas {s). s3} does not.

We are now ready to give a definition of the Candy model by specifying its density
p with respect to g Let s = {s1.....8,}. 7 = l...., n = n(s), be a configuration of line
segments. Then

RS
i I, — I ! .
st s, max nASi st ndS) sy
pis) = ap” I I exp [-——«- X o e (n
el L b A
where 1. 0a0 s oy € (017 and > 0 are the model parameters. and x = p(0) >0 is the
Y1 ) p !

normalizing constant. Stoica et al. (2000) recommend 7, <3,. Thus. the model
discourages free and singly connected segments. as well as sharp crossings and dis-
agreements in orientation of close segments. In theorem 1 of section 2.2, we show
that the model is well-defined.

2.2 Swubility

The existence of any point process specified in terms of an unnormalized. measurable
density p with respect to a Poisson point process is ensured by Ruelle’s stability
condition (RUELLE. 1969, Chapter 3, and GATes and WEesTcoTT. 1986). This
condition requires the energy E(s) = — log (p(s)/p(D)) to be bounded from below by a
linear term in the number of marked points in s. i.e. £(s)>—cn(s) for some. ¢ >0, in
which case the density (or the corresponding energy) is called szable. For the Candy
model (1),

n(s)
.
E(s) = —n(s)logp — ) 12
( / ; lma.\
= 1,(8)0g7, = n(8) log 7y = my{s) log 75 — no(s) logy
= —n(s)logp
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182 M. N. M. van Lieshout and R. S. Stoica
If B> 1, E(s) is stable with ¢ = log B; otherwise £(s)=0 > —cn(s) for any ¢>0.

THEOREM 1. The unnormalized Candy density (1) is (Q, F)-measurable and
integrable, hence specifies a well-defined marked point process.

PrOOF: Measurability follows from lemmata 1-2, integrability is implied by the
Ruelle condition. Indeed write X for the line segment process with density p. Then

X ,—vK)
E, E%))] <3 (max{1))(K)" = explmax{$ — 1,0}v(K)] < 5. 0

n=0

A stronger stability condition is that of /local stability, which requires the ratio
p(s U {n})/p(s) to be uniformly bounded from above, bothins € Q and S35 & s,
whenever p(s)>0.

LEMMA 3. The Candy model (1) is locally stable.

Proor: Let s € Q, and 5 = (k,1.0) € S. Since p(s)>0, the ratio p(s U {n})/p(s) is
well-defined. Clearly, the addition of 5 results in an extra term f exp {(/ = /max)/
Imax} < B regardless of the position of  with respect to s. The effect on the other four
terms does depend on the type of connections introduced by #, which we investigate
separately below.

First consider n, (s U {n}) — n; (s). If 1 is not connected to any segment in s, the
difference in free segments is 1. If # is singly connected, say through its endpoint ¢, by
the addition of # to s the number of free segments decreases by the number of
segments connected to e that were free in s; since at most 6 segment endpoints
separated by at least a distance r. can be placed in a ball of radius r. centered at e, in
this case ny (s U {n}) — ny (s) = —6. Analogously, for doubly connected segments 7,
ny (s U {n}) = ny (s) =-12.

Next, turn to n(s U {n}) — n.(s). If u is free, the number of singly connected
segments does not change. If 5 is singly connected through its endpoint e, since the
status of segments not connected to # is not affected, we have to examine segments
connected to e. Now, segments that were free with respect to s might get singly
connected in s U {x}; if both endpoints of a segment were connected in s, so are they
ins U {n}. Segments for which an endpoint connected to e was also connected in s and
the other endpoint was free in s remain singly or become doubly connected in the new
configurations U {#}. On the other hand, a segment that was singly connected in s but
whose s-free endpoint is connected to e becomes doubly connected after the addition
of n. Hence n.(s U {n}) ~ n.(s) increases by 1 at least, and decreases by the number of
segments that were singly connected in s with the free endpoint connected to e. Since
there could be at most 6 segments of the latter type, n(s U {#}) — n.(s)>-5. In the
case where 7 is doubly connected, again we may restrict ourselves to considering the

status of segments connected to 1. As before, n(s U {}) ~ n.(s) decreases by at most
@ VVS, 2003
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the number of segments that were singly connected in s with the free endpoint
connected to y. a number that is bounded by 12.

Finally. note that nds U () = ads) and n(s U (7)) 2 n8). I we collect all the
terms examined above, we obtain

pisuint) 12

<Py
oGS P

and the proof is complete. O

2.3 Muarkov properties

A marked point process is said to be [ Ripley-Kelly) Markov (RipLEY and KELLY,
1977) with respect to some symmetric relation ~ on S if its density is hereditary (that
is p(s) >0 implies p(s) >0 for all 8" < s). and if for all s such that p(s) > 0. and all
n & s, the ratio p(s U {n7}) p(s) depends only on y and those s € s satisfying s ~ #. In
physical terms, the energy required to add » to s depends only on 5 and its ~-
neighbors in s. Equivalently, p is a Markov density if' it can be written as a product of
interactions associated with c¢liques: configurations in which each pair of elements
consists of neighbors. By convention, the empty set and singletons are cliques as well.
See the monograph (LiesHouT. 2000) for further details.

PROPOSITION 1. For 7 € (0,1, the Candy model with probability density
pls) x "', s€Q.
with respect to p is Markov with respect to the relation ~,.
Proor: The density is strictly positive, hence hereditary. Furthermore. for
ngsel

p(su {'7}) — anesainbionds) _atdsesis~nh
pls) ' ‘

depends only on the number of ~,-neighbors of 4 in s. O

PROPOSITION 2. For € (0.1], the Candy model with probability density
p(s) x ;™% s€Q,
with respect to w is Markov with respect 1o the relation ~,,.

Proor: The density is strictly positive, hence hereditary. Furthermore, for n = (k.
L. 0y) &s¢eQ.

p(S U {'I}) — SR nus)
pis) '

Lnt{s=th g, 00 s~ pmind |0, -0, ] - {0, ~t, [ > 1))
i

depends only on # and its ~, -neighbors in s. O
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184 M. N. M. van Lieshout and R. S. Stoica

Both the model of proposition 1 and that of proposition 2 exhibit pairwise
interactions only. that is, factorize according to

pis) = pith H B8 8;)

where ~ 1s either ~, or ~, and ¢ is a symmetric, measurable interaction function. It
takes the constant value - for the Candy model of proposition I: for the model in
proposition 2.

gl —6, Le= 0, -0, [h>t)
: .

i

OLsLy; =

The statistics n, and n. call for a configuration dependent Markov prop-
erty (BappeLey and MoLLER, 1989), since in order to decide whether a given seg-
ment 1s free, singly. or doubly connected, one needs to examine the segments
connected to it. and the segments connected to these, as well. The two-step iterated
neighbors relation. also studied in (HAYAT and GUBNER, 1996, and GRABARNIK and
SARKKA, 2001). is defined as follows. Based on the relation ~. on S (definition 1), set

XNV UN VOrIZES X~ I ¥

for x. v € sand s € Q. A point process with density p is said to be nearesr-neighbor
Markov (BapDELEY and MoLLER, 1989) with respect to ~ in the sense of Baddeley
and Moller if p is hereditary, and if for any configuration s such that p(s) > 0, and all
1 ¢ s. the ratio p(s U {#}) p(s) depends only on 7, its two-step iterated neighbors in
$ 1. and the relations ~J and ~ | restricted to this neighborhood.

sy

THEOREM 2. For 7y, 72 € (0,1), the Candy model with probability density

pisi AN seq,
with respect 1o iy two-step iterated neighbors Markov with respect to the relation ~..
on S.

I

Proor: By the proof of lemma 3

LHescinti-nas
ol

depends only on the status of 5 and that of the segments connected to it. To decide
the status of . knowledge of its ~.-neighbors suffices; to assess the connection type
of these neighbors, their neighbors have to be taken into account. The same is true
tor

acscatbeous

~

Consequently. pis a two-step iterated neighbors Markov point process with respect
to the connection relation ~ . O
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The Candy model: properties and inference 185

As a consequence of propositions 1-2 and theorem 2, we have the following
result.

COROLLARY 1. The Candy model is Ripley-Kelly Markov at fixed range 2(lmax + 1)
regardless of the marks, i.e. with respect to the relation ~ defined by

X~y ¢>|| ky — ky ” <2(/max + re)-

3 Metropolis—-Hastings algorithms

3.1 Review

The Candy model (1) is too complicated to sample from directly. Rather, we apply
Markov chain Monte Carlo techniques (GiLks et al.. 1996, GEYER. 1999, and
MgLLER, 1999) to construct a Markov chain that has the Candy model as its
equilibrium distribution 7, i.e.

n(F) = -/‘;p(s)d;t(s) (2)

for all F € F; as before, yt denotes the distribution of the reference Poisson process.
An example of such a Markov chain is the Metropolis—Hastings sampler, originally
introduced in statistical physics (METROPOLIS et al., 1953, and BARKER, 1965). Itisa
flexible proposal-acceptance technique (HastinGs, 1970, and Peskun, 1973) that is
well adapted to point processes (OGATA and TANEMURA, 1981, GEYER and M@LLER,
1994, and GREEN, 1995). In that context, transitions must at least include births and
deaths in order to jump between configurations containing different numbers of
segments. The generic choice is as follows. Suppose a birth is proposed with prob-
ability p,, and a death with the complementary probability p, = 1 — p,. In the case
of a birth, a new segment is sampled uniformly, so that the birth proposal density
can be written as

b =— . S, 3
=iy $€Q ne (3)
with respect to the product da(y) = (dv(A)dIdO)/ (Tt (Imux—Imin)) Of Lebesgue measure
on K and uniform distributions on [/, lmax] and [0, 7). It should be noted that (3)
does not depend on the current configuration s. The probability mass function of
death proposals for points 5 € s is given by

|
d(s.n) = (s) (4)
for s # (), i.e. each point  has the same probability of being removed. In the case
s = (), the new state is empty too.
A transition from s to §" is subsequently accepted with probability x(s,s"). The
detailed balance equations require that, under the target equilibrium density p, the
addition of n € S to s € Q is matched by a death of » from s U {5}, that is,
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186 M. N. M. van Lieshout and R. S. Stoica

prb(s.niais.s U {nhip(s) = pad(s U {n}.ma(s U {n}.s)p(s U {n}). (5)

A solution is
. o, padisU{n}np(s U {r]})} 6
ws.sU{n}) = mmll. b5, 1)P(S) (6)

with (s U {7'.s) given by substitution of (6) into (5). By the results in (GEYER and
MorrLer, 1994, Section 4). the algorithm converges in total variation to m for
r-almost all initial configurations provided p,, € (0, 1). The theorem applies equally
to any pair of strictly positive proposal distributions. not necessarily equal to (3)-(4).

3.2 Tuailor-made updutes

3.2.1 Connection-dependent transitions
Stoica et al. (2000) (see also Stoica, 2001) used the following updates:

birth and death of a free segment:

birth and death of 4 singly connected segment with a single ~ -neighbor:
birth and death of a singly connected segment with at least two ~ -neighbors:
e birth and death of a doubly connected segment.

Clearly. such moves are tailored to obtain connected configurations, but the subsets
of S to which new segments of a given type must belong are quite complicated. Thus,
Stoica et al. (2000) and Storca (2001) felt forced to use approximations (both of the
proposal density and the acceptance ratio) that jeopardize the convergence of the
Markov chain to the correct target distribution.

A more tractable alternative is to design a probability density that tends to propose
segments near to and aligned with the current network. The idea is that preference
should be given to positions that “fit" the current configuration. More specifically. a new
segment might be positioned in such a way that it extends the current configuration.

Let us consider an endpoint ¢ of a segment », cf. figure 2. To sample a segment
connected to ¢, we begin by choosing an orientation 6, say according to a probability
density f with respect to the uniform distribution on [0, ). Let H(e, i) be the half-
open half plane at ¢ orthogonal to 5 that does not contain . Now. since the center of
the new segment must be an element of the set K N H(e, n). the segment length
cannot exceed twice the distance /. ,(0) of ¢ to K along the line through ¢ with
orientation (! restricted to the half plane H(e, 1). Consequently. conditional on ¢, we
assume the length law to possess a density g(-e, i, 0) with respect to the uniform
distribution on [/pin. fmax] that is concentrated on [/yin. min{2/.,(t), lmaxt]. The
update is completed by generating a midpoint A, uniformly or otherwise, on M(e, 1.
0. 1) = ble+ l(cos 0. sin )2, r.) N K. the sign chosen so as to belong to H(e.y). We
will denote the probability density with respect to v by h(kle, n. 0. /). Clearly. the
birth is possible only if the interval [/yn. min{2/,,(6). /.t and the set M(e, ., 0, 1)
both have strictly positive Lebesgue measure. In that case, the proposal density at
endpoint ¢ of segment # is given by

CVVE 2003



The Candy model: properties and inference 187

‘~><\ Men.8.)
\ ) O\
Heen) N
Fig. 2. How to extend the network.
ble.n. (k,1.0)) = h(k|e.n.0.1)g(Ile.n. 0)f(0) (7)

where 0 € [0, 1), [ € [/in. min{2/.,(0), lnax}]. and k € M(e. 1, 0, [); otherwise B(e, 1,
(k. I, 8)) = 0. In summary, provided A(s) # () for s € Q, the proposal density for
prolonging the segment configuration s is given by the average

> ble.n. (k.1,0)) (8)

e)EA(s)

l
by(s, (k,1,0)) = ——
of (7) over A(s), the set of endpoint-segment pairs (e, 1), € s, allowing addition of a
new segment to e. If #(A(s)) = 0. a uniformly distributed birth is proposed as in (3).

Examples of (7) include uniform updates
f(0) =1;
llend) = Unas = Iin)! {1 € [Inin, min{2/, (0), lmax }]} : )
ninll{z[e’l(())ﬂ [l“'dx} - lmin
I{k € M(e,n,0,1)}
v(iM(e,n,0,)NK)’

hkle,n.0.1) =

again assuming non-zero denominators. Alternatively, the orientation could be
centered around that of 5, for example by means of a Beta distribution, to favor a
better alignment.

In the simulations of section 5 we connect only to segment endpoints ¢ € » further
than %/nm +r. away from K the current connections to ¢ may be taken into
account as well, as illustrated in figure 3. With this convention, for any 0, g(je, ., 0)
may be positive on the maximal interval [/nin. faax] and the putative midpoint is
sampled on a full ball of area nr’.

Back bends, although penalized by the model for most values of 74 and 1 (see (1)),
may be formalized by sampling a new center in the subset M(e, 5, 8,/) of H(e, ) for
given / and 6. as indicated in figure 2. Note that the two directed distances to the
boundary of K along a line through ¢ with orientation # may well be different,
© VVS, 2003



188 M. N. M. van Lieshout and R. S. Stoica

Fig. 3. Extremities marked by triangles are connected and further than %lm“K + r. to the boundary, those
labeled by a black disk are closer than _%lnm + r. to the boundary of K.

leading to conditional length distributions that are concentrated on different
supports. In practice, we restrict ourselves to extremities that are far away from the
boundary. hence both distributions are concentrated on the full support [/nin. /maxl-
Thus, a mixture proposal distribution for prolongation and back bends could take
the following form. Choose an orientation ¢ according to a probability density f with
respect to the uniform distribution on [0, m). Conditionally given 6, the length is
sampled according to a density g(-|e, 1, ) with respect to the uniform distribution on
[linin- fmuy)- Finally, with probability p,, a midpoint is sampled on M(e. n, 0. [), say
uniformly; with the complementary probability p,; = 1 — py, a center is generated
on M(e.n.0,1) (see figure 2).

3.2.2 Modifving the segment characteristics

To improve the mixing of the Markov chain, apart from adapting the birth proposal
density to the target density, a common strategy is to include transition types other
than births and deaths. Thus, in (SToicA et al., 2000, and Stoica, 2001), the
following updates are considered:

e changing the orientation of a singly connected segment;

e changing the length of a singly connected segment;

¢ changing the position of a singly connected segment with a single ~_.-neighbor;

e changing the position of a singly connected segment with at least two ~
neighbors.

<

The classification according to connection types has the same drawback as for the
birth and death moves of section 3.2.1. Here we present some alternatives that are
easier to implement.

In the set-up described in (OGATA and TANEMURA, 1981, and GEYER and M@LLER.
1994), transitions from s # @) to s = (s\{}) U {{} for n € s and { € S are governed
© VVS, 2003
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by the proposal kernel «(s, 1, {) and acceptance probabilities «(s. (s \ {#}) U {{}).
Thus, for each choice of s € Q and n € s, (s, 1,") is a probability density (with
respect to the intensity measure of the reference Poisson process law u) governing the
change of n € s, and the proposal to replace n by { is accepted with probability
a(s.(s \ {#}) U {{}). If a member n of configuration s is selected for modification with
probability ¢(s.n), the detailed balance equations require that p(s)g(s., n)c(s, 1, {)a(s,
s\ ) WAL =p((s \ {n}) UA{THa((s \ {n) U {C} Oel(s \ {n}) U (L &omad(s \
{n}) U {{}. s) whenever p(s), p((s \ {#}) U {{})>0. We assume the selection proba-
bilities are strictly positive, and impose the condition that (s, #, {) >0 if and only if
c((s \ {n}) U {{}. ¢, n)>0. In other words, if € s may be changed into {, the reverse
update is also possible. Then,

a(s, (s\ {n})U{C})
:mm{HﬂﬂbﬂNHGMM\MDUELQd@Wﬂﬂﬂﬂﬂm? (10)
’ p(s)g(s,m)e(s,n,<)
is well-defined and solves the detailed balance equations.

Within the general context described above, there are many valid choices for
the proposal kernel. To implement uniformly distributed joint ‘local’ changes,
let C(n) = Cilk,) X Cplly, 0,) € K X (Umin. Imax] X [0, 7)) be a neighborhood of the
segment #n = (k,, /,, 0,) such that v(Ci(k,)) and v(C,(/,. 0,)) are both strictly
positive, and set

(s 1. (/(, /’0)) _ l{k € Ck(kl))} (lmux - [min)nl{([ﬂe) € Cm(lr)a()u)} )

V(Ck(kn)) "'(Cm([nw()n))

In order to ensure reversibility, we have to require that { € C(5) whenever y € C({).
Typically, C(n) will be relatively small and centered at . If C() =S, the local
character is lost, and a new segment is proposed uniformly over the whole space. The
latter has the potential advantage of moving faster through the state space, the
former of fine tuning likely configurations without destroying the overall appearance
of the network. If C,, is of Cartesian product form, and the proposal density fac-
torizes with respect to its position, length and orientation component, the modifi-
cation may be implemented sequentially.

Change transitions are also useful for performing a death followed by a birth in
one step, especially if the acceptance probability for the death is low. Thus, as in
section 3, let (. ) and (-, ) be strictly positive, and set

dlsn) =d(sn)  elson,l) =b(s\ {n}.0) (11)

for the proposal to move from s € Qto (s \ {n}) U {{} forsomen €s, (€ S.

A second type of update is to change a single segment component, say the
orientation. Thus, for each 5 = (k,.-,. 0,) € s € Q, we define a probability density
cols, 1. +) with respect to the uniform distribution on [0, ). Given a neighborhood
Cu(l,) < [0, m) of 0, with positive length. one might set
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w10 € Cu(t)} (12)

cu(s. 1, H) = ]ength(cﬂ(en)) .

If Cy(8,) = [0, m). the new orientation is sampled uniformly over its full range; more
commonly, a value in some small neighborhood of the current one is proposed.
Again, we denote the probability that » € s is selected for modification by g(s, n),
and assume positivity. Then, the detailed balance equations read

p(s)g(s, meco(s,n, O)afs, (s\{n}) U {(ky, 1, 0)})
= p((s\{n}) U{ kmlm@ q((s\{n}) U {(ky, Iy, 0)}, (ky, 1, 60))
x co((s\{n}) U {(ky, Iy, 0)}, (ks 1y, 6), 0p)((s\{n}) U { (ky, 14, 0)},8)

whenever p(s), p((s\{n}) U {(k,. I, 0)}) are positive. We assume that cq(s, 1, 0;) >0 if
and only if ¢,((s\{n}) U {{}.{.6,) > 0 whenever » and { differ only in their orientation
component. Then,

a(s. (S\{n})Uu{¢})
mn{ P\ U{lHg((s\{n}) U{C} Oeol(s\{n}) U{L}, ¢, 9';)} (13)
p(s)q(s,n)co(s,n,0;)

is well-defined and solves the detailed balance equations.

Similarly, one may define a proposal density ¢(s, #, -) with respect to v on K for
modifying the position of a segment, or ¢(s, 1, ) with respect to the uniform
distribution on [/nin, fmax] for the length.

3.3 Convergence

In this section, we investigate the limit behavior of the Metropolis-Hastings
algorithm with transitions as described in sections 3.1 and 3.2. As in (2), write = for
the law of the Candy model and denote the product measure on S by o. The
transition kernel is

PW.F) = py /S b(0, m)a(0. {n})1({n})do(n)

 16(0) [1 - [ b(w,ma(@,{n})da(n)] (14)

fors=0,F € F, and P(s, F) equals

[ bls.nials.s s=5U (me($)doln) +0 S d(s.)as.s ==\ P)14(6)
R Y gl ) [ etssmals,s = (5\is)) U {r) 1+(< o)
wn Yl [ als.s.8)a(5.8 = S\ ULl s, 0)))1£(5) 2

$iES
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+ D Zq (s,s; /ck(s,s,-,k)oc(s,s' = (S\{s:}) U{(k. L5, 0,,) N 1p(s))dv(k)

S;€8

+ 1p(s) [1 —pb/ b(s,n)a(s,sU{n})da(n) ded (s.si)a(s,s\{s:})

—pL-Zq(s,si)/c(s,si,n)a(sw (s\{si}) U {n})da(n)

—pqu (s,s1) / co(s,si. 0)a(s, (s\{si}) U{(ks,. 1. 9)})an

;€S

_p,\Zq(s Si /c/\ s,s; k)afs, (s\{s;}) U{(k.l5.0) })dv(k)| (15)
€S

otherwise. Here, p,, py and p; are the probabilities of performing a change update, a

modification of orientation and position respectively. The densities associated with

the various transition proposals and the acceptance probabilities are as described in

sections 3.1 and 3.2.

Let L(s, F) be the probability that the Markov chain started at s € Q ever hits the
set F € F. The chain is said to be Harris recurrent (MEYN and TWEEDIE, 1993,
Chapter 9, and GEYER, 1999) if L(s, F) = | foralls € Qand all F € Fwith n(F)>0.
In words, all m-positive sets F are almost surely reached eventually from every initial
state. Moreover, such sets will be visited infinitely often (M@LLER, 1999). The weaker
condition of m-irreducibility requires only L(s, F) >0 for all s € Q and all n-positive
F, or equivalently P"(s, F)>0 for some n € N,.

An even stronger property than Harris recurrence is geometric ergodicity, that is
geometric convergence in total variation:

1P(s.) = mll - <c(s)y”

for some constant y<1 and some m-integrable, non-negative function c. This
property is important in establishing a central limit theorem for the sample path
average of certain m-integrable functions (MEYN and TwEEDIE, 1993, Chapter 17,
GEYER, 1999, and M@LLER, 1999). Geometric ergodicity can be proved by means of
the so-called geometric drift condition (MEYN and TWEEDIE, 1993, Theorem 15.0.1).
In order to state this condition, we need the concept of a small set. A set C € Fis
small if 7(C)> 0 and there exists a probability measure @ on F, a constant ¢ >0, and
an integer n € N such that

P(s,F)=zeq@(F)
foralls € Candall F € F. Now, the geometric drift condition entails the existence of a
function V: Q — [1, e ), constants < and b < eo, and a small set C € Fsuch that

/ V(s)P(s,ds')<aV (s) + bl{s € C} (16)
Q

for alls € Q.
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For further details on Markov chains on general state spaces, see e.g. the textbook
by MEYN and TweeDIE (1993).

THEOREM 3. Let the functions b, d, ¢, ¢, ¢g and o be as described in sections 3.1-3.2.2,
and in particular suppose that the birth proposal density and the death proposal
probabilities are strictly positive. Assume that

disUfnt.m) o

U, =
" nESSES, b(S, ’7)

asn — oo and that py+ py+ pe+ pi+po = 1 with py, pa € (0,1) and p,. px, py € [0,1).
Then the Metropolis—Hastings sampler for the Candy model (1) defined by (14)—(15)
is geometrically ergodic.

The proof is an adaptation to the Candy model of the proof of (GEYER, 1999,
Proposition 3.3).

Proor: By lemma 3, the Candy model is locally stable. Let 2> 0 be an upper bound
to the likelihood ratio, and set V(s) = 4™ for some 4> 1.
The acceptance probability (6) for adding n ¢ s to s is

min{lwpdd(s U {n},mp(s U {’l})} 7N
pbb(sa U)p(s) Db

which, as u,, tends to 0, does not exceed a prefixed constant >0 if n(s) is suffi-
ciently large. Similarly, the acceptance probability for removing # € s from sU n

equals
in 1 ___pob(s.mp(s) }/ { . [ b(s,n) } p_h}
mm{ pad(s U {n},n)p(suU {n}) > miny 1.inf dsuinnm) " pa

which reduces to 1 since the assumptions of the theorem imply

b(s, n)
nesseS, d(s U {’1}7 1)

n(s)s

as n(s) tends to infinity.
For the Metropolis—Hastings transition kernel (15),

/ V(s')P(s,ds') = ppA™ / b(s,n)(A4 — Da(s.s U {n})da(y)
Q s

+paA" Y d(s, (A7 = Das,s\{n}) + 4" (17)

Hes

For line segment configurations s of sufficiently large cardinality, say n(s)>N,,
(s, s\ (7)) =1 and xs.s U {n})<e, hence, recalling 4>1, (17) is less than or
equal to

(o4 = De+pg(4™" = 1) + 1] (s).
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Since we have not yet specified €, and the multiplier of V(s) in the right hand side
converges to 1+pd(A"1——1) =pptp.tprtpetpsA<l as e tends to zero, we can
pick e such that [oV(s)P(s, ds’)<aV(s) for some a<1.

Now, the set C = {s € Q: n(s) < N.} is small. Indeed, the acceptance probability of
a down step exceeds A : = min{p,/(u,p,A) : n<N.}. Without loss of generality, A is
strictly less than 1. Moreover, P((, S¢)>p,. Hence,

Pe(s,80) =P (s, So) PV (0, So) = (paA)™

for any configuration s consisting of at most N, segments. Hence, C is small with
scalar multiplier (p,,A)N' to the Dirac measure on 0.

We have seen that (16) is satisfied for s ¢ C. For s € C, the geometric drift
condition holds if we take b = 4™ !, O

Since self-transitions occur with positive probability, the Metropolis—Hastings
chain is aperiodic, and the proof of theorem 3 implies the chain is Harris recurrent
(GEYER, 1999).

For the uniform birth and death kernels (3)-(4),

v(K)

U, =—=—20

Tn+1

as n — oo. In the simulation study described below in section 5, we use a uniform
death kernel (4) and the mixture

bls.1) = piv g + Py (5.1 (18)
with b,(-, ) given by (8) to govern births. Here py, = 1 — pa, € [0, 1]. If p;;, = 0, when
choosing uniform updates (9), it is readily verified that u, — 0 still. However, if
another density is preferred in constructing the updates, for example a Beta distri-
bution, then u, — o might diverge. To avoid this problem we shall always take p,;
strictly positive. Then, by arguments similar to the ones above for py, = 1, u, tends
to zero if n increases to infinity. Hence, our choice of the mixture (18) is justified both
by theoretical reasoning and by the fact that it improves the convergence properties
of our Markov chain (cf. section 5).

3.4 Discussion

In the preceding sections we discussed a range of updates that may be used as
ingredients for a Metropolis~Hastings sampler. Although we tried to be rather
general, yet other types of moves can be envisaged. For instance, it is possible to
merge two close segments into one, or reversely to split a large one in two
(GRENANDER and MILLER, 1994, RUE and Hussy, 1998, RUE and SYVERSVEEN, 1998,
or RUE and HurN, 1999). However, one would have to be careful in order to
guarantee that the length of the new segment is in the interval [/, fmax]- It would
also be possible to update several segments at the same time.
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1115 important to stress that a uniformly optimal sampler does not exist. For j; = 1
for = ... 4 the Candy model reduces to a Poisson line segment process, and
simple unitorm birth and death proposals will suffice. For stronger interaction. more
wetght should be given to updates that result in more likely patterns. In practice. in
order to build a sampler that convergences in a reasonable time, some experimen-
tatton is needed to find a balance between the various moves that accomplishes these
obectives,

Finally, note that in order to assess whether the algorithm has converged.
dragnostic tests based on the sutficient statistics of the model are widely used, see e.g.
(Storca. 2001, However, such tests only serve to falsify, that is. to indicate
convergence is not vet reached. Theoretically, since the Candy model is locally stable
(ef lemma 3). coupling into and from the past (PrRopP and WiLsoN. 1996, and
Kexpart and MoLLer, 2000) can be used to obtain exact samples from (1). but due
to the luck of monotonicity, it seems to be rather cumbersome in practice, especially
in case of strong interaction between the segments.

4 Maximum likelihood estimation
The Candy model (1} is a five-parameter exponential family

pals) = 2(Bih(s)exp irt(s)r log UJ
L

) .. L 1=l . . .
with normalizing constant x(¢). A(s) = | |:’:|' exp [—L~———, il ‘} , canonical sufficient statistic
max

1) = ) nd ). 1 o). m )7 and parameter vector 0 = (f, 71, 7. 7. ',‘4)7.. Upon
observing a pattern s, consider the log likelihood ratio

) puls) 2 0) 7

118 = log=—— = log—— + (s} {log 8§ — log ¢

‘[)II“(S’ ‘-1{00) ( ) ( 2: Lg ﬂ)

with respect to some reference value 8, € (0, o) x (0,1]4. For notational conveni-
ence. from now on we shall write @ = log # component wise and express the log
likelihood ratio as a function of . It is well known (GEvER and THOMPSON. 1992,
and GEYER. 1999) that x(wy) (@) = £, exp [(X) (0 - oy)]. Hence, the log likeli-
hood ratio can be rewritten as follows

Hent = 1081 (e = ) — logE,, exp{t(“()r(w - y) (19)

from which it is easy to derive the score equations VI(w) = «(s) ~ E,#(X) and Fisher
mtormation matrix -V-/(w) = Var,#(Y). In summary, the maximum likelihood
equations

E 11X = (s} (20)
state that under . the expected values of the sufficient statistics must be equal to the
observed values. Now, since the covariance matrix of 1(X) is positive definite. (19) is

concave in . Therefore. provided the score equations have a solution o in R x R* .
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a unique maximum likelihood estimator exists and equals &. Otherwise, a maximum
may be found on the boundary of the parameter space.

To solve (20), GeyErR and THOMPSON (1992), GEYER (1994) and GEYER (1999)
suggested approximating the expectation in (19) by its Monte Carlo counterpart

zm: exp {I(X,A)T(w - wo)] /m
i=1

based on a sample X),..., X, from p, . If we write @, for the Monte Carlo
approximation to the true maximum likelihood estimator &, under mild regularity
conditions (GEYER, 1994, Theorem 7), this Monte Carlo maximum likelihood esti-
mator is consistent and satisfies the following central limit theorem

V(G — @) — (0, 1(&) ' 21(@) ™)

where /(@) = Var,t(X) = —V?*/(&®) denotes the Fisher information matrix at the
maximum likelihood estimator, and T is the asymptotic covariance matrix of the

normalized Monte Carlo score /mV/,(®). Clearly, I(®») can be estimated by
"'vzlm((bnz)-

An estimator for ¥ is given by
Cﬂl

LS exp [z()(,)’(a)m — wy )] }

where C,, is the empirical covariance matrix of (z(s) — t(X))e!™)(@n=0) baged on a
sample X|,..., X, from p,, .

Importance sampling (19) relies on a reference value ey, that is not too far from the
maximum likelihood estimator. One could use a grid of such values, with linear
interpolation, or use a preliminary iteration. The Monte Carlo Newton—-Raphson
method (PENTTINEN, 1984) iteratively updates the parameters by

5 -

Wy = Wy — Vllm(wk)VIVl,,,(wk)

k=1,2..... where /,(-) denotes the Monte Carlo approximation to the log likelihood
ratio (19) based on a sample of size m from p,,. Since Vi(w;) = 1(s) — E,, 1(X).
another possibility is to set

Wiyl = Wi + q.[t(s) - t(Xk)]

for decreasing step sizes ¢, > 0 and single realizations X} from p,, . a technique known
as stochastic approximation (YOUNES, 1988, and MOYEED and BADDELEY, 1991). As
k tends to infinity, under regularity conditions, w; approaches the maximum like-
lihood estimator, but no central limit theorem appears to be known for either
method, although recent hybrid stochastic approximation techniques seem promis-
ing (DELYON et al., 1999, and Gu and ZHu, 2001). Here we use the iterative gradient
method, a variation on Newton-Raphson that guarantees convergence towards the
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local optimum in the vicinity of the initial point @, (CIARLET, 1994, Chapter 8, and
PrEss et al., 1988, Chapter 10), i.e.

{ (g + p(w) Vig(ay)) = maxpeg In(wr + Vi (wyg))

21
W1 = O + p(wr) Vi () 1)

where p(wy;) is computed using a one-dimensional optimization of the log likelihood
ratio. With occasional re-sampling to avoid numerical instability, the following al-
gorithm (DESCOMBES et al., 1999. and Stoica, 2001) was used.

1. Initialize w, and k = 1;

2. Generate a sample of size m from p,, and compute VI, (o;);

3. For every component [ = {1,....5} and gradient component A, compute the
intervals I}, = [wi — AA;,wj\_ + AA] with scalar precision parameter 1.>0, and
maximize the log likelihood ratio in every such interval by golden section search to
obtain a new value oy 4 ;

4. If log + \—wil| > T, then k = k+1 and go to the step 2. Ty is a fixed threshold;

S AV + )=V 60| > Tan then k = k+1 and go to the step 3, else stop the
algorithm. Ts is a fixed threshold.

5 Examples

This section is devoted to a simulation study of the Candy model, a realization of
which is shown in figure 4. The parameters are given in the figure, writing
o, = log f, and n, for the total number of points. We suppress the dependence of the
sufficient statistics on the realization for brevity. Throughout, the point space K = [0,
256] x [0, 256], and marks take values in [30, 40] x [0, =). The connection radius is
r. = 1/y/m. The threshold values d and t are 0.05 © and 0.2 7 respectively.

In our first experiment, we ran the Metropolis-Hastings algorithm defined by the
kernel (15) with p, = 0.6, p,=0.2, p.=0.1, py=0.1 and p, = 0.0 from an empty

" Model parameters Sufficient statistics
o W = 2.5 n = 98

1 wf=—11.0 ng =17

£ we = —5b.5 Ne = 32

1 wp = —2.5 n, =11

°1 We = —2.5 Ne = 12

Fig. 4. Realization (left) of the Candy model with parameter values as listed in the center table. The
observed values of the sufficient statistics are listed in the right hand table.
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initial configuration for 2 x 107 iterations, sub sampling the sufficient statistics every
10° steps. The birth proposal density b(s, ) was a mixture of (3) and (8) with
respective weights p;, = 0.2 and p,, = 0.8; for the network extension, we used the
uniform laws (9) and py = p,; = 0.5. For a configuration s the set A(s) was the

1 Model parameters Sufficient statistics
Y 4 wy = 2.5 ne = 114

1 wy=—11.0 ng =1

] we = —4.5 ne = 58

3 L wy = —2.5 ne =11

-1 \ W = —2.5 Ne =

“' Model parameters Sufficient statistics
“' wy = 2.5 ng = 127

1 Wy = —-7.5 ng = 68

£ we = —5.5 ne. = 20

1 wy =—2.5 n, = 15

. we = —2.5 n, =4

JEN Model parameters Sufficient statistics
Y =25 n, = 72

] wy = —11.0 ng=1

: w, = —5.5 ne = 24

i, I w, = —6.5 n.=0

- w, = —6.5 Ne =10

e Model parameters Sufficient statistics
’ we = 4.0 ns = 137

: | w; = —125 ng =0

s we=—-"7.0 ne = 30

¥ w, = —2.5 n, =14

. . We = —2.5 ne = 23

T T T T T T
) 0 100 180 20 260

Fig. 5. Realizations (left plot) of the Candy model for a range of parameter values (center table) with
observed values of the sufficient statistics (right hand table).
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Fig. 6. Time series of the cumulative means of the sufficient statistics during a run of the Metropolis—
Hastings sampler described in the text. The initial state (a realization of a binomial process of 200
segments) is shown in the top left plot, the final configuration in the top right figure.

union of all the extremities of the segments which are not connected and which are
further than 1/ + 7. to the boundary of K.

The death proposal probabilities were as in (4). Regarding the change updates, in
all cases ¢(s, 5;) = 1/n(s), while ¢(s, s;, 1) = b(s \ {s;}, n) and cy(s, s;, #) was as in (12)
with Cy(6,) = [0, m).

Figure 5 gives an idea of how the topology of typical configurations depends upon
the model parameters. It can be seen that the connectivity of the network can be
controlled by the parameters ®, and oy, the curvature by w,, ®,, and the density by o,.

Our second experiment aimed to assess the performance of the Metropol-is—
Hastings algorithm by investigating the effect of the initial configuration and the
various move types on the convergence speed. Figures 6 and 7 show realizations
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7, = 8.93

Fig. 7. Time series of the cumulative means of the sufficient statistics during a run of the Metropolis-
Hastings sampler described in the text. The initial state is shown in the top left plot, the final
configuration in the top right figure.

of the reference Candy model (parameters as in figure 4) obtained by the sampler
described above. but initialized respectively with a realization of a binomial
process consisting of 200 line segments and a random network rather than an
empty configuration. To obtain the random network, we ran the Metropolis—
Hastings sampler using change moves only., ie. py=ps=p; =00, p.=0.5,
Po = 0.5 with ¢(s, s), c(s. s 1) and cy(s. s;. n) as before and a realization of a
binomial process of 200 points as the initial state. As for figure 4. we carried out
2 x 107 iterations; the sufficient statistics were sub sampled every 107 steps. The
estimated means 7. .... i, of the sufficient statistics based on the three runs are
close, and their evolution during the simulation does not seem to evoke doubts
about convergence.
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fi = 29.01 fip = 8.04
R
. :LN\-N\,«-W«,_M |
-

7, = 8.72

Fig. ¥ Time series of the cumulative means of the sufficient statistics during a run of the Metropolis-
Hastings sampler with mixture weights p,, = 0.45, p, = 0.15, p. = 0.3, py = 0.1. The initial state is
the empty configuration, the final configuration is plotted in the top figure.

Next, we varied the mixture weights of the various moves. Figure 8 shows a
realization and time series of the cumulative means for the weights p, = 0.45,
pa=0.15 p.=03, py=0.1. In figure 9 the modified weights were p,=0.7,
pa=0.1. p.=0.1. and py=0.1. In both cases, p; = 0.0, pj, = 0.2, p-, = 0.8, and
par=py =05

The results indicate that neither the choice of initial state nor that of the mixture
weights is crucial in the investigated range. However, psj should not drop so far as to
effectively exclude the tailored moves, as we show in figure 10, a simulation in which
only uniform birth and death moves were used (i.e. pp=10.75, p;=0.25 and
pip=10.p3 =00 = p. = py = p).

From the plots, it can be observed that after a large number of iterations a
connected network emerges, but that the evolution of the sufficient statistics still

indicates non-stationarity, in contrast to the previous examples.
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PN
Ao = 28.73 A = 7.93
Ao = 9.03

Fig. 9. Time series of the cumulative means of the sufficient statistics during a run of the Metropolis—
Hastings sampler with mixture weights p, = 0.7, p, = 0.1, p. = 0.1, py = 0.1. The initial state is
the empty configuration, the final configuration is plotted in the top figure.

To illustrate parameter estimation (section 4), suppose the data consist of the
segment pattern shown in figure 4. We implemented the procedure explained in
section 4, and initialized the iterative gradient algorithm (21) with arbitrary initial
values listed in the first column of table 1. For the fixed thresholds /= 107%,
T, =3.0and T>» = 107°, we obtained the output shown in table 1 (second column).
Taking these values as reference parameter, we computed the Monte Carlo log
likelihood ratio based on a Metropolis-Hastings run of 2 x 107 iterations, sub
sampling the sufficient statistics every 10® steps. The weights of the various moves
were the same as in the simulation of the reference model in figure 4. Cross
sections of the Monte Carlo log likelihood ratio thus obtained are presented in
figure 11. The maximum of /,(w) is located at @,,. which vector is listed in the
third column of table 1. The asymptotic standard deviation of the unknown
maximum likelihood estimator &, and the Monte Carlo standard error (MCSE) are
tabulated in table 2.
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Fig. 10. Time series of the cumulative means of the sufficient statistics during a run of the Metropolis-
Hastings sampler with mixture weights p, = 0.75. p, = 0.25 and p,;, = 1.0, pay = p. = py = 0.0.
The initial state is the empty configuration, the final configuration is plotted in the top figure.
Table 1.  Estimating the parameters for the data of figure 4.

Iterative method

Iterative method

Monte Carlo MLE

wf =15 @ =2.28 o =224
wf = ~11.00 @ = -10.11 @ = ~10.08
W = =55 o = -5.18 0" = —5.09
ol =-3.5 0 = ~2.22 @Mt = -2.23
ol = =35 @ = -2.00 o = -2.06
Table 2. Estimation errors.

Asymptotic standard deviation

Monte Carlo standard deviation

0.17
0.39
0.25
0.33
0.29

0.004
0.002
0.003
0.002
0.004
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Fig. 11.
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Monte Carlo approximation of the log likelihood ratio for the data of figure 4. The x axis
represents the variation of a single component. The y axis represents the values of the Monte
Carlo log likelihood ratio with all other components of & fixed.

6 Conclusion

In the first part of this paper, we recalled the definition of the Candy model, and
studied its analytical properties, concentrating on the Ruelle condition, local stability
and Markovianity. The second part was devoted to statistical inference by Markov
chain Monte Carlo. We suggested a variety of tailor-made updates, and proved
convergence of the resulting transition kernel. Finally, we applied the sampler in a
parameter estimation scheme, and performed a simulation study which shows the
importance of a reasonable mix of updates that balance quick moves through the

© VVS, 2003



204 M. N. M. van Lieshout and R. S. Stoica

state space with tailor made ones for fine tuning and enhancement. The relative
weights of the moves may be adapted to the model parameters. Simple statistics,
such as the number of free segments, converge faster than more complex ones like
the average fraction of doubly connected segments.

Since the Candy model was conceived in the context of road extraction from
satellite images. we expect the results presented in this paper to be a starting point in
unsupervised network extraction. This can be done by adding to the Candy model a
term (Stoica et al.. 2000, and Stoica, 2001) which adapts the location of the road
network to the data. As road density depends on geographical location. we expect to
be able to improve the detection by defining a Candy model with respect to a non-
homogeneous Poisson point process (SToyan and STOYaN, 1998). Another
important point is to study the feasibility of exact simulation algorithms for the
Candy model.
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